skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Peppas, Spyridon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 6, 2026
  2. Free, publicly-accessible full text available May 1, 2026
  3. Free, publicly-accessible full text available April 1, 2026
  4. NA (Ed.)
    In this paper, we present a method for decoding uplink messages in Internet of Things (IoT) networks that employ packet repetition. We focus on the Sigfox protocol, but our approach is applicable to other IoT protocols that employ message repetition. Our approach endeavors to enhance the reliability of message capture as well as the error rate performance at the base station. To achieve this goal, we propose a novel technique that capitalizes on the unique features of the IoT network’s uplink transmission structure. Through simulations, we demonstrate the effectiveness of our method in various scenarios, including single-user and multi-user setups. We establish the resilience of our approach under higher system loads and interference conditions, showcasing its potential to improve IoT network performance and reliability even when a large number of devices operates over limited spectrum. Our findings reveal the potential of the proposed method as a promising solution for enabling more dependable and energy-efficient communication in IoT Low Power Wide Area Networks. 
    more » « less